Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A hydrogen-bonded chain of edge-fused rings in 5-nitroisatin

Christopher Glidewell, ${ }^{\text {a* }}$ John N. Low, ${ }^{\text {b }}$ Janet M. S. Skakle ${ }^{\text {c }}$ and James L. Wardell ${ }^{\text {d }}$

${ }^{\text {a }}$ School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, ${ }^{\text {b }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, ${ }^{\text {c }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dinstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil

Correspondence e-mail: cg@st-andrews.ac.uk

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.061$
$w R$ factor $=0.109$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$, crystallizes with $Z^{\prime}=2$. The molecules are linked by a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into chains of edge-fused $R_{4}^{4}(16)$ and $R_{4}^{4}(26)$ rings.

Comment

We report here the molecular and supramolecular structure of 5-nitroisatin (I), whose behaviour is briefly compared with that of 5-iodoisatin (II), which we reported recently (Garden et al., 2006).

(I)

(II)

Compound (I) crystallizes with $Z^{\prime}=2$ in the space group $P \overline{1}$ (Fig. 1), and the two molecules have very similar dimensions. Both exhibit long bonds, $\mathrm{C} 11-\mathrm{C} 12$ and $\mathrm{C} 21-\mathrm{C} 22$, between the two carbonyl groups (Table 1), as typically found in isatins (Palenik et al., 1990; Garden et al., 2006), while the dihedral angles between the nitro groups and the adjacent aryl rings are $10.4(2)^{\circ}$ in molecule 1 and $7.4(2)^{\circ}$ in molecule 2.

The molecules are linked into chains of edge-fused rings by a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link groups of four molecules, two of each type, into centrosymmetric $R_{4}^{4}(16)$ rings (Bernstein et al., 1995) (Fig. 2), and these tetramolecular aggregates are linked by a single $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond into a chain of edge-fused rings along [001], with $R_{4}^{4}(16)$ rings centred at $\left(\frac{1}{2}, \frac{1}{2}, n+\frac{1}{2}\right)(n=$ zero or integer $)$ alternating with $R_{4}^{4}(26)$ rings centred at $\left(\frac{1}{2}, \frac{1}{2}, n\right)(n=$ zero or integer) (Fig. 3).

These chain of rings are weakly linked by a sheared, parallel (type III, Allen et al., 1998) carbonyl-carbonyl interaction. Atom O 11 in the molecule at (x, y, z), which lies in the chain along $\left(\frac{1}{2}, \frac{1}{2}, z\right)$, makes a short dipolar contact with atom C22 in the molecule at $(-x, 1-y, 1-z)$, which is part of the chain along ($0, \frac{1}{2}, z$); the key dimensions are $\mathrm{O} 11 \cdots \mathrm{C} 22^{\mathrm{i}}=$ $2.835(4) \AA, \mathrm{O} 11 \cdots \mathrm{O} 22^{\mathrm{i}}=3.266(3) \AA, \mathrm{C} 11-\mathrm{O} 11 \cdots \mathrm{C} 22^{i}=$ $145.8(2)^{\circ}$ and $\mathrm{C} 11-\mathrm{O} 11 \cdots \mathrm{O} 22^{\mathrm{i}}=163.9(2)^{\circ}$ [symmetry code: (i) $-x, 1-y, 1-z]$. Propagation by inversion of this interaction links the chains into sheets parallel to (010).

Figure 1
The two independent molecules of compound (I), showing the atomlabelling scheme and the hydrogen-bond (dashed line) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Part of the crystal structure of compound (I), showing the formation of a centrosymmetric tetramolecular aggregate built from $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position $(1-x, 1-y, 1-z)$, and hydrogen bonds are shown as dashed lines

In 5-iodoisatin, (II), by contrast, which crystallizes with $Z^{\prime}=$ 1 , the molecules are linked by a combination of one $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, one $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and one iodocarbonyl interaction into sheets containing alternating

Figure 3
A stereoscopic view of part of the crystal structure of compound (I), showing the formation of a chain of edge-fused $R_{4}^{4}(16)$ and $R_{4}^{4}(26)$ rings along [001]. Hydrogen bonds are shown as dashed lines, and for the sake of clarity, H atoms not involved in the motifs shown have been omitted.
columns of $R_{2}^{2}(9)$ and $R_{4}^{3}(16)$ rings, while in isatin itself, the molecules are linked by paired $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into $R_{2}^{2}(8)$ dimers which are themselves linked into sheets by aromatic $\pi-\pi$ stacking interactions (Garden et al., 2006).

Experimental

A commercial sample (Aldrich) of 5-nitroisatin was recrystallized from ethanol.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=192.13$
Triclinic, $P \overline{1}$
$a=5.5595$ (6) £
$b=12.0772(13) \AA$
$c=12.2795(14) \AA$
$\alpha=87.322(3)^{\circ}$
$\beta=87.355(3)^{\circ}$
$\gamma=83.049(3)^{\circ}$

Data collection

Bruker SMART 1000 CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.954, T_{\text {max }}=0.991$

$$
\begin{aligned}
& V=816.85(16) \AA^{3} \\
& Z=4 \\
& D_{x}=1.562 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.13 \mathrm{~mm}^{-1} \\
& T=291(2) \mathrm{K} \\
& \text { Thick plate, colourless } \\
& 0.28 \times 0.12 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.109$
$S=1.00$
4096 reflections
253 parameters

6130 measured reflections 4096 independent reflections
1331 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=28.5^{\circ}$

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0209 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}_{\AA^{-3}}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

C11-C12	$1.558(4)$	C21-C22	$1.552(4)$
C14-C15-N15-O151	$-11.5(5)$	C24-C25-N25-O251	$8.0(6)$
C14-C15-N15-O152	$169.8(3)$	C24-C25-N25-O252	-173.5 (4)

Table 2
Hydrogen-bond geometry $\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N11-H11 . ${ }^{\text {O }} 21$	0.86	2.11	2.888 (3)	151
N21-H21 \cdots O11 ${ }^{\text {i }}$	0.86	2.03	2.875 (3)	168
C27-H27 \cdots O152 ${ }^{\text {ii }}$	0.93	2.43	3.272 (4)	151

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x, y, z-1$.
All H atoms were located in difference maps and then treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C}, N)$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the University of Aberdeen; the authors thank the University of Aberdeen for funding the purchase of the diffractometer. JLW thanks CNPq and FAPERJ for financial support.

References

Allen, F. H., Baalham, C. A., Lommerse, J. P. M. \& Raithby, P. R. (1998). Acta Cryst. B54, 320-329.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Garden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. \& Glidewell, C. (2006). Acta Cryst. C62, o321-o323.
Palenik, G. J., Koziol, A. E., Katritzky, A. R. \& Fan, W.-Q. (1990). Chem. Commun. pp. 715-716.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

